Olimpiada judeteana Tulcea

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Dorobantu Razvan
Pitagora
Posts: 50
Joined: Thu Oct 09, 2008 9:12 pm

Olimpiada judeteana Tulcea

Post by Dorobantu Razvan »

Tulcea Etapa judeteana
1.Comparati numerele:
\( \frac{27^5}{4^{11}}si\frac{2^{23}}{9^8} \)
mai sunt inca 2 dar acum trebuie sa plec la scoala :P . Le postez dup-aia.
Gata. Am venit. :D
2.Sa se arate ca numarul \( 8+8^2+8^3+...+8^{888} \) se divide cu 73.
(mai erau niste probleme de genul asta, vedeti mai jos la celelatlt topic-uri :)) .
3.Intr-o cutie sunt de 5 ori mai multe bile rosii decat bile albe. Daca se adauga 6 bile albe si se iau 18 bile rosii in cutie raman de doua ori mai multe bile rosii. Cate bile albe si cate rosii au fost initaial in cutie?
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

1)\( 27^5=(3^3)^5=3^{15} \)
\( 4^{11}=(2^2)^{11}=2^{22} \)
\( 9^8=3^{16} \)
\( \Rightarrow \frac{3^{15}}{2^{22}} \) si \( \frac{2^{23}}{3^{16}} \)
\( 9^7>8^7 \Rightarrow (3^2)^7>(2^3)^7 \Rightarrow 3^{14}>2^{21}/\cdot2 \)
\( \Rightarrow 3^{14}\cdot2>2^{22} \) , dar \( 3^{14}\cdot2<3^{14}\cdot3=3^{15} \)
\( \Rightarrow 3^{15}>2^{22} \) , deci prima fractie e supraunitara . \( 3^{15}>2^{22}/\cdot2 \Rightarrow 3^{15}\cdot2>2^{23} \Rightarrow 3^{16}>2^{23} \) , deci a doua fractie e subunitara .
2)\( 8+8^2+8^3+...+8^{888}=8(1+8+8^2)+8^4(1+8+8^2)+...+8^{886}(1+8+8^2)=73(8+8^4+...+8^{886}) \)
3)\( x \)-numarul de bile rosii
\( y \)-numarul de bile albe
\( x=5y \)
\( (y+6)\cdot2=x-18 \)
\( \Rightarrow x=50 , y=10 \)
User avatar
Dorobantu Razvan
Pitagora
Posts: 50
Joined: Thu Oct 09, 2008 9:12 pm

Post by Dorobantu Razvan »

N-am verificat, dar cred ca e bine... :)
Post Reply

Return to “Clasa a V-a”