Probleme de olimpiada cu divizibilitate

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Dorobantu Razvan
Pitagora
Posts: 50
Joined: Thu Oct 09, 2008 9:12 pm

Probleme de olimpiada cu divizibilitate

Post by Dorobantu Razvan »

\( Problema 1: Sa se arate ca N=7+7^2+7^3+...+7^1992 \vdots 19 \)
\( Problema 2: N=7^1+7^2+7^3+...+7^999 \vdots57 \)
\( Problema 3 N=6^1+6^2+6^3+...+6^2000 \vdots518 \)
\( Problema 4:S=8^1+8^2+8^3+...+8^888 \vdots73 si S \vdots13 \)
Scuzati cum a iesit nu stiu sa scriu bine puterile in latex :oops:
Nu e bine uitati-va mai jos am postat problema corect.
Last edited by Dorobantu Razvan on Sun Nov 09, 2008 10:21 am, edited 1 time in total.
User avatar
naruto
Pitagora
Posts: 55
Joined: Tue Oct 14, 2008 2:27 pm

Post by naruto »

\( 7^{1992} \) se scrie 7^{1992}. Daca vrei sa lasi spatiu pui intai semnul \ si apoi bati spatiu.
User avatar
Dorobantu Razvan
Pitagora
Posts: 50
Joined: Thu Oct 09, 2008 9:12 pm

Post by Dorobantu Razvan »

\( N=7+7^2+7^3+...+7^{1992}\vdots19 \)
\( N=7 ^1+7^2+...+7^{999}\vdots57 \)
\( N=6^1+6^2+...+6^{2000}\vdots518 \)
\( N=8^1+8^2+...+8^{888}\vdots13 \)
ATENTIE! ''N'' nu este acelasi numar in toate ecuatiile! Sunt 4 probleme diferite!
Alta viata nu? :lol:
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

o viata noua :p

Primul N :

\( 7 + 7^2+ 7^3 = 7 ( 1 + 7 + 7^2 )
= 7 \cdot 57
N = ( 7+7^2+7^3) +(7^4+7^5+7^6)+...+(7^{1990}+7^{1991}+7^{1992} ) = 7 ( 1 + 7 +7^2) + 7^4 ( 1 + 7+ 7^2 ) + ...+ 7^{1990} ( 1 + 7 + 7^2 ) = 7 \cdot 57 + 7^4 \cdot57 + ... + 7^{1990} \cdot 57 = 57 \cdot ( 7 + 7^4 + ...
+ 7^{1990}) \vdots 57 \)


\( 57 = 19 \cdot 3 \)

Nu ma injura , imi ia o groaza sa scriu porcaria asta kilometrica. Le fac pe rand
Last edited by miruna.lazar on Fri Nov 14, 2008 9:35 pm, edited 2 times in total.
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

imi ia o groaza sa scriu porcaria asta kilometrica
:lol:
Nu trebuie sa le mai scrii si pe celelalte. Arata care-i ideea, pe scurt.
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

Pai , deci tot asa . Facem grupe ... Grupam puteri care adunate dau numarul acela ca sa putem da factor comun.Unele sunt mai complicate , dar tot asa le-am facut
Marcelina Popa
Bernoulli
Posts: 208
Joined: Wed Mar 05, 2008 3:25 pm
Location: Tulcea
Contact:

Post by Marcelina Popa »

Aia cu 518 e mai ciudatzica.
User avatar
Dorobantu Razvan
Pitagora
Posts: 50
Joined: Thu Oct 09, 2008 9:12 pm

Post by Dorobantu Razvan »

Dar celelalte?
Nu le vrea nimeni? :?
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

Pai am zis eu :) Se fac la fel..
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

Am facut-o si pe aia cu 518
User avatar
miruna.lazar
Bernoulli
Posts: 224
Joined: Wed Oct 08, 2008 8:41 pm
Location: Tulcea

Post by miruna.lazar »

O idee la aia cu 518 :


\( N = 2 \cdot 3 + 2^2 \cdot 3^2 + 2^3 \cdot 3^3 + 2^4 \cdot 3^4 +...+ 2^{2000} \cdot 3^{2000 } = \)

Rezolvati-o voi mai departe fiecare cate un metru ca sa facem un kilometru


P.S : Le grupati in grupe de cate 4 , dand factor comun pe 3
George+++
Euclid
Posts: 16
Joined: Thu Nov 20, 2008 5:42 pm

Post by George+++ »

aici totul e gruparea,si in fond trebuie sa obtinem n*un nr divizibil cu 57 de exemplu n fiinnd n la x
Post Reply

Return to “Clasa a V-a”