Demonstrati ca pentru orice \( a,b,c\in\left(\frac{1}{2},+\infty\right) \) au loc inegalitatile:
\( a) \) \( \frac{1}{a+b-1}+\frac{1}{b+c-1}+\frac{1}{c+a-1} \geq \frac{9}{a^2+b^2+c^2 \)
\( b) \) \( \frac{a^2}{b+c-1}+\frac{b^}{c+a-1}+\frac{c^2}{a+b-1} \geq 3 \)
Claudiu Mindrila, R.M.T. 1/2009
Inegalitate OWN
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitate OWN
Last edited by Claudiu Mindrila on Tue Feb 17, 2009 11:02 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste