Fie sirul \( (x_n)_{n\ge 1} \) definit prin \( x_n=\sum_{k=n}^{2n-1}{\sqrt[n]{\log_k(k+1)}}. \) Sa se demonstreze ca :
a) \( x_n <x_{n+1}; \)
b) \( [n(x_n-n)]=0,\ (\forall) n \ge 3 \).
Gabriel Dospinescu rev. Arhimede /2007
Sir cu logaritmi
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
b) \( (1+\frac{1}{k})^{k}<e \)
\( k \ln(1+\frac{1}{k})<1 \)
\( \ln(k+1)-\ln(k)<\frac{1}{k} \)
\( \frac{\ln(k+1)}{\ln{k}}<1+\frac{1}{k\ln{k}} \)
\( \log_k{k+1}<1+\frac{1}{k\ln{k}}<1+\frac{1}{n}<(1+\frac{1}{n^2})^n \) (prima relatie pt ca \( k \geq n \), iar a doua din Bernoulli), de unde
\( \sqrt[n]{\log_k{k+1}}< 1+\frac{1}{n^2} \).
Rezulta ca
\( x_n <n (1+\frac{1}{n^2})=n+\frac{1}{n} \)
\( [n(x_n-n)]<[n(n+\frac{1}{n}-n)]=1 \)
In punctul a) am demonstrat ca \( x_n>n \)
Deci \( 0 \leq [n(x_n-n)] < 1 \)
\( [n(x_n-n)]=0 \).
\( k \ln(1+\frac{1}{k})<1 \)
\( \ln(k+1)-\ln(k)<\frac{1}{k} \)
\( \frac{\ln(k+1)}{\ln{k}}<1+\frac{1}{k\ln{k}} \)
\( \log_k{k+1}<1+\frac{1}{k\ln{k}}<1+\frac{1}{n}<(1+\frac{1}{n^2})^n \) (prima relatie pt ca \( k \geq n \), iar a doua din Bernoulli), de unde
\( \sqrt[n]{\log_k{k+1}}< 1+\frac{1}{n^2} \).
Rezulta ca
\( x_n <n (1+\frac{1}{n^2})=n+\frac{1}{n} \)
\( [n(x_n-n)]<[n(n+\frac{1}{n}-n)]=1 \)
In punctul a) am demonstrat ca \( x_n>n \)
Deci \( 0 \leq [n(x_n-n)] < 1 \)
\( [n(x_n-n)]=0 \).