N. Paun, 2002

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

N. Paun, 2002

Post by Marius Mainea »

Fie \( a,b,c,x,y,z\in\mathbb{R}, a+b+c=x+y+z=1. \) Aratati ca :

\( a(x+b)+b(y+c)+c(z+a)<1 \)

Concursul ,,Nicolae Paun'', 2002
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Solutie!

Post by maxim bogdan »

Inmultind inegalitatea cu \( 2 \) avem de demonstrat ca:
\( 2(ax+by+cz)-[1-2(ab+bc+ca)]\leq 1\Leftrightarrow 2(ax+by+cz)-(a^2+b^2+c^2)\leq 1 \), adica:

\( (a^2-2ax+x^2)+(b^2-2by+y^2)+(c^2-2cz+z^2)+(1-x^2-y^2-z^2)\geq 0\Leftrightarrow \)

\( (a-x)^2+(b-y)^2+(c-z)^2+(1-x^2-y^2-z^2)\geq 0 \)

Aceasta inegalitate nu este adevarata pentru orice numere reale \( a,b,c,x,y,z \) cu \( a+b+c=x+y+z=1 \) (incearca de exemplu \( a=x=2; b=y=3; c=z=-4 \)).

In schimb este adevarata pentru orice numere reale \( a,b,c \) si pentru orice numere reale pozitive, nu neaparat nenule, \( x,y,z \) cu \( a+b+c=x+y+z=1 \) deoarece \( x,y,z\in [0;1]\Rightarrow 1=x+y+z>x^2+y^2+z^2 \).

Egalitatea are loc pentru: \( a=x=1;b=c=y=z=0 \).
Feuerbach
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: N .Paun ,2002

Post by Marius Mainea »

De fapt enuntul exact era :
Marius Mainea wrote:Fie \( a,b,cx,y,z\in\mathbb{R}, a+b+c=x^2+y^2+z^2=1. \) Aratati ca :

\( a(x+b)+b(y+c)+c(z+a)<1 \)

Concursul ,,Nicolae Paun'' ,2002
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Avem conform inegalitatii Cauchy-Buniakowski-Schwarz:
\( ax+by+cz \leq \sqrt{(a^2+b^2+c^2)(x^2+y^2+z^2)}=\sqrt{a^2+b^2+c^2} \).
Apoi \( ab+bc+ca=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{1-(a^2+b^2+c^2)}{2} \).
Notand \( t=\sqrt{a^2+b^2+c^2} \) avem ca:
\( a(x+b)+b(y+c)+c(z+x)=ab+bc+ca+ax+by+cz=t+\frac{1-t^2}{2} \leq 1 \Leftrightarrow (t-1)^2 \geq 0. \)
Inegalitatea nu este stricta, astfel ca alegand \( a=x=1 \) si \( b=y=c=z=0 \) obtinem \( LHS=1 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Post Reply

Return to “Clasa a IX-a”