Trei multimi

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Trei multimi

Post by alex2008 »

Daca \( M \) este o multime finita vom nota cu \( n(M) \) numarul elementelor sale . Fie \( A,B,C \) trei multimi . Dovediti ca :
\( n(A\cup B\cup C)=n(A)+n(B)+n(C)-[n(A\cap B)+n(A\cap C)+n(B\cap C)]+n(A\cap B\cap C) \)
. A snake that slithers on the ground can only dream of flying through the air.
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

Desenand cele 3 multimi ca niste diagramele van euler, afirmatia este evidenta.

Image


In desen am notat cu \( M1,M2,M3,M4 \) multimile de puncte situate in cea mai mica suprafata inchisa care le contine.

\( n(A\cup B \cup C)=n(A)+n(B)+n(C)-n(M1)-n(M2)-n(M3)-2n(M4)=n(A)+n(B)+n(C)-[(n(M1)+n(M4)) + (n(M2)+n(M4))+(n(M3)+n(M4))]+n(M4)=n(A)+n(B)+n(C)-[n(A\cap B)+n(A\cap C)+n(B\cap C)]+n(A\cap B\cap C) \)
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Post by alex2008 »

Eu cred ca merge si astfel :
Folosind proprietatea \( n(A\cup B)=n(A)+n(B)-n(A\cap B) \)
Deci\( n[(A\cup B)\cup C]=n(A\cup B)+n(C)-n[(A\cup B)\cap C]=n(A)+n(B)-n(A\cap B)+n(C)-n[(A\cap C)\cup (A\cap B)]=n(A)+n(B)+n(C)-n(A\cap B)-n(A\cap C)-n(A\cap B)+n(A\cap B\cap C) \) , ceea ce trebuia demonstrat .
. A snake that slithers on the ground can only dream of flying through the air.
Post Reply

Return to “Clasa a IX-a”