\( 1. \)
Fie \( a,b,c \) numere pozitive astfel incat \( abc=1 \). Sa se arate ca: \( \frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a} \leq 1. \)
\( 2. \)
Daca \( a,b,c \in (0, +\infty) \) atunci: \( \frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc} \leq \frac{1}{abc} \)
\( 3. \)
Daca \( x,y,z \) sunt numere pozitive astfel incat \( x+y+z=1 \) atunci are loc inegalitatea: \( \sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy} \leq 2. \)
Titu Zvonaru, Bogdan Ionita, Concursul "Revistei Arhimede", 2006
Inegalitati pentru vacanta de iarna
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Inegalitati pentru vacanta de iarna
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)