Internet Olympiad Problema 2

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Internet Olympiad Problema 2

Post by Beniamin Bogosel »

Calculati \( \left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right)^{2008} \).

Internet Olympiad, Ariel University of Samaria, Israel
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: Internet Olympiad Problema 2

Post by Marius Mainea »

Beniamin Bogosel wrote:Calculati \( \left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right)^{2008} \).

Internet Olympiad, Ariel University of Samaria, Israel

\( \left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right)^{2008}=\left( \matrix{ cos a & sin a \\ -sin a & cos a \right)^{2008}=\left(\matrix {cos{2008a}& sin{2008a}\\-sin 2008a & cos2008a}\right)=-\left( \matrix{ \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2}} \right) \)

unde \( a=\frac{\pi}{3} \)
Post Reply

Return to “Clasa a 11-a”