Ranguri si valori proprii

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Ranguri si valori proprii

Post by Beniamin Bogosel »

Fie \( X \) o matrice patratica de ordinul \( n \), nesingulara, cu coloanele \( X_1,X_2,...,X_n \). Fie \( Y \) matricea avand coloanele \( X_2,...,X_n,0 \). Demonstrati ca matricile \( A=YX^{-1} \) si \( B=X^{-1}Y \) au rangul \( n-1 \) si au toate valorile proprii egale cu 0.

IMC 1995
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

\( rang(YX^{-1})=rang(X^{-1}Y)=rangY=n-1 \) deoarece \( X^{-1} \) este inversabila si numarul maxim de coloane liniar independente ale lui Y este n-1 (acestea sunt \( X_2,X_3,...X_n \))

Apoi se arata ca \( A^{n-1}=B^{n-1}=O_n \)
Post Reply

Return to “Algebra”