Fie \( x,y,z\ge 0 \) astfel incat \( x^2+y^2+z^2=1 \). Demonstrati ca :
\( \frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}\ge \frac{3\sqrt{3}}{2} \)
\( \frac{1}{1-x}+\frac{1}{1-y}+\frac{1}{1-z}\ge \frac{9+3\sqrt{3}}{2} \)
Inegalitati conditionate 1
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutie inegalitatea 1!
Vom demonstra ca: \( \frac{x}{1-x^2}\geq \frac{3\sqrt{3}}{2}\cdot x^2 \)
\( \Leftrightarrow x(1-x^2)\leq \frac{2}{3\sqrt{3}}. \)
Consideram functia: \( f: (0;1) \to \mathb{R} \) cu \( f(x)=x(1-x^2). \)
Avem: \( f^{\prime}(x)=\lim_{h\to 0}\frac{(x+h)-(x+h)^3-(x-x^3)}{h}=1-3x^2 \)
\( f^{\prime}(x)\geq 0\Leftrightarrow \frac{1}{\sqrt{3}}\geq x\Leftrightarrow x\in(0;\frac{1}{\sqrt{3}}]. \)
\( f^{\prime}(x)\leq 0\Leftrightarrow \frac{1}{\sqrt{3}}\leq x\Leftrightarrow x\in[\frac{1}{\sqrt{3}};1) \)
Din ultimele doua relatii ne rezulta faptul ca functia \( f \) este crescatoare la dreapta lui \( \frac{1}{\sqrt{3}} \) si descrescatoare la stanga lui, adica \( \frac{1}{\sqrt{3}} \) este punct de maxim global al functiei \( f \).
\( \Rightarrow f(\frac{1}{\sqrt{3}})\geq f(x), (\forall)x\in(0;1) \)
\( \Rightarrow x(1-x^2)\leq \frac{2}{3\sqrt{3}}. \)
Scriind relatiile analoage si adundu-le obtinem inegalitatea din enunt.
\( \Leftrightarrow x(1-x^2)\leq \frac{2}{3\sqrt{3}}. \)
Consideram functia: \( f: (0;1) \to \mathb{R} \) cu \( f(x)=x(1-x^2). \)
Avem: \( f^{\prime}(x)=\lim_{h\to 0}\frac{(x+h)-(x+h)^3-(x-x^3)}{h}=1-3x^2 \)
\( f^{\prime}(x)\geq 0\Leftrightarrow \frac{1}{\sqrt{3}}\geq x\Leftrightarrow x\in(0;\frac{1}{\sqrt{3}}]. \)
\( f^{\prime}(x)\leq 0\Leftrightarrow \frac{1}{\sqrt{3}}\leq x\Leftrightarrow x\in[\frac{1}{\sqrt{3}};1) \)
Din ultimele doua relatii ne rezulta faptul ca functia \( f \) este crescatoare la dreapta lui \( \frac{1}{\sqrt{3}} \) si descrescatoare la stanga lui, adica \( \frac{1}{\sqrt{3}} \) este punct de maxim global al functiei \( f \).
\( \Rightarrow f(\frac{1}{\sqrt{3}})\geq f(x), (\forall)x\in(0;1) \)
\( \Rightarrow x(1-x^2)\leq \frac{2}{3\sqrt{3}}. \)
Scriind relatiile analoage si adundu-le obtinem inegalitatea din enunt.
Feuerbach
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
probabil ca inca nu ati invatat ca inegalitatile postate la clasa a IX-a nu sunt asa grele ca sa fie novoie de derivate.... incearca cu substitutiile \( x=\tan\frac{A}{2},\ y=\tan\frac{B}{2},\ z=\tan\frac{C}{2} \), unde \( A,B,C \) sunt unghiurile unui triunghi ascutitunghic. Ar trebui sa recunosti forumla pentru tangenta unghiului dublu... Si pentru inegalitatea \( \tan A+\tan B+\tan C \geq 3\sqrt{3} \) sa nu cumva sa folositi derivate... (indiciu \( \tan A+\tan B+\tan C=\tan A\tan B\tan C \)).
Pentru a 2-a inegalitate avem \( \sum \frac{1}{1-x}=\sum\frac{1+x}{1-x^2}=\sum \frac{1}{1-x^2}+\sum\frac{x}{1-x^2}\geq \frac{9}{2}+\frac{\3\sqrt{3}}{2} \), unde am folosit un CBS si prima inegalitate.
Simplu, si pe intelesul elevilor de a IX-a....
Pentru a 2-a inegalitate avem \( \sum \frac{1}{1-x}=\sum\frac{1+x}{1-x^2}=\sum \frac{1}{1-x^2}+\sum\frac{x}{1-x^2}\geq \frac{9}{2}+\frac{\3\sqrt{3}}{2} \), unde am folosit un CBS si prima inegalitate.
Simplu, si pe intelesul elevilor de a IX-a....
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Ma bucur ca stii asa de multe in clasa a IX-a. Vreau numai sa-ti zic ca inegalitatile date la clasa a 9-a nu necesita derivate. Cel mai adesea se foloseste un CBS, sau alte inegalitati cunoscute....
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Re: Solutie inegalitatea 1!
\( \Leftrightarrow x^2(1-x)^2\le\frac{8}{27}\Leftrightarrow \sqrt[3]{x^2\cdot (1-x)\cdot(1-x)}\le \frac{x^2+1-x^2+1-x^2}{3} \)maxim bogdan wrote:Vom demonstra ca: \( \frac{x}{1-x^2}\geq \frac{3\sqrt{3}}{2}\cdot x^2 \)
\( \Leftrightarrow x(1-x^2)\leq \frac{2}{3\sqrt{3}}. \)