Inegalitate 3

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Inegalitate 3

Post by Marius Mainea »

Fie a,b,c pozitive. Demonstrati inegalitatea:

\( \frac{a^3+abc}{b+c}+\frac{b^3+abc}{c+a}+\frac{c^3+abc}{a+b}\ge a^2+b^2+c^2. \)

Cezar Lupu
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

\( \sum \frac{a^3+abc}{b+c}\geq\sum a^2\Leftrightarrow\sum\frac{a(a-b)(a-c)}{b+c}\geq 0 \).
Dar \( \sum\frac{a(a-b)(a-c)}{b+c}\geq \frac{\sum a(a-b)(a-c)}{a+b+c}\geq 0 \), din Schur. Egalitatea se atinge cand \( a=b=c \).
n-ar fi rau sa fie bine :)
Post Reply

Return to “Inegalitati”