Ecuatie functionala gen Cauchy

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
Edgar Dobriban
Euclid
Posts: 10
Joined: Sat Apr 05, 2008 12:47 pm

Ecuatie functionala gen Cauchy

Post by Edgar Dobriban »

Sa se determine functiile derivabile \( f: R \to (-\infty,1) \) cu proprietatea \( f(1)=-1 \) si \( f(x+y)=f(x)+f(y)-f(x)f(y), \forall x,y \in R \) .

Concursul "Grigore Moisil" 2008, Problema 1
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Notam \( g(x)=\ln(1-f(x)) \) si ecuatia functionala devine \( g(x+y)=g(x)+g(y) \), \( g \) continua, deci \( g(x)=ax \) si \( f(x)=1-e^{ax} \).


Pentru x=1 obtinem \( a=\ln2 \) si \( f(x)=1-2^x \).
Post Reply

Return to “Analiza matematica”