Inegalitate logaritmica

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Inegalitate logaritmica

Post by mihai++ »

Demonstrati ca \( 1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}<1+[\log_2n],\forall n\in\mathbb{N^*} \).
n-ar fi rau sa fie bine :)
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Fie \( k=[\log_2n] \)

Atunci \( 2^k\le n<2^{k+1} \) si

\( 1+\frac{1}{2}+...+\frac{1}{n}\le 1+(\frac{1}{2}+\frac{1}{3})+...+(\frac{1}{2^{k-1}}+...\frac{1}{2^k-1})+(\frac{1}{2^k}+...+\frac{1}{n}+...+\frac{1}{2^{k+1}-1})<{1+1+1+....+1}=1+k \)
Post Reply

Return to “Clasa a X-a”