Fie x,y,z numere reale nenule , astfel incat xy ,yz ,zx sunt numere rationale.
a) Aratati ca numarul \( x^2+y^2+z^2 \) este rational.
b) Daca ,in plus, numarul \( x^3+y^3+z^3 \) este rational , aratati ca x,y,z sunt rationale.
Numere rationale si irationale 2
Moderators: Bogdan Posa, Laurian Filip
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Solutie.
\( a) \) Deoarece \( xy,yz\in\mathbb{Q}\Rightarrow x^{2}yz\in\mathbb{Q}\Rightarrow\frac{x^{2}yz}{yz}\in\mathbb{Q}\Rightarrow x^{2}\in\mathbb{Q}. \). Analog se arata ca \( y^{2},z^{2}\in\mathbb{Q}. \) Prin sumare rezulta ca \( x^{2}+y^{2}+z^{2}\in\mathbb{Q} \).
\( b) \) Avem \( x(x^{3}+y^{3}+z^{3})=x^{2}\cdot x^{2}+x\cdot y^{3}+x\cdot z^{3}=x^{2}\cdot x^{2}+xy\cdot y^{2}+xz\cdot z^{2}\in\mathbb{Q}\Rightarrow x\in\mathbb{Q}. \) In mod analog rezulta ca \( y,z\in\mathbb{Q} \).
Generalizare. Daca \( n\in\mathbb{N}^* \) este numar par, iar \(
xy,yz,zx\in\mathbb{Q} \) sa se arate ca \( x^{n}+y^{n}+z^{n}\in\mathbb{Q} \). In plus, daca \( x^{n+1}+y^{n+1}+z^{n+1}\in\mathbb{Q} \) atunci \( x,y,z\in\mathbb{Q}. \)
\( a) \) Deoarece \( xy,yz\in\mathbb{Q}\Rightarrow x^{2}yz\in\mathbb{Q}\Rightarrow\frac{x^{2}yz}{yz}\in\mathbb{Q}\Rightarrow x^{2}\in\mathbb{Q}. \). Analog se arata ca \( y^{2},z^{2}\in\mathbb{Q}. \) Prin sumare rezulta ca \( x^{2}+y^{2}+z^{2}\in\mathbb{Q} \).
\( b) \) Avem \( x(x^{3}+y^{3}+z^{3})=x^{2}\cdot x^{2}+x\cdot y^{3}+x\cdot z^{3}=x^{2}\cdot x^{2}+xy\cdot y^{2}+xz\cdot z^{2}\in\mathbb{Q}\Rightarrow x\in\mathbb{Q}. \) In mod analog rezulta ca \( y,z\in\mathbb{Q} \).
Generalizare. Daca \( n\in\mathbb{N}^* \) este numar par, iar \(
xy,yz,zx\in\mathbb{Q} \) sa se arate ca \( x^{n}+y^{n}+z^{n}\in\mathbb{Q} \). In plus, daca \( x^{n+1}+y^{n+1}+z^{n+1}\in\mathbb{Q} \) atunci \( x,y,z\in\mathbb{Q}. \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)