Maraton de probleme de clasa a V-a - semestrul I
- miruna.lazar
- Bernoulli
- Posts: 224
- Joined: Wed Oct 08, 2008 8:41 pm
- Location: Tulcea
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Problema 21
Sa se arate ca suma \( 2001^p+2001^p+...+2001^p \) , care are \( 2000 \) de termeni , este divizibila cu \( 87\cdot 10^3 \) , unde p este un numar natural nenul .
Sa se arate ca suma \( 2001^p+2001^p+...+2001^p \) , care are \( 2000 \) de termeni , este divizibila cu \( 87\cdot 10^3 \) , unde p este un numar natural nenul .
Last edited by Quit on Mon Jan 05, 2009 11:17 am, edited 1 time in total.
My physiology : if I see a problem I solve it ; if I don`t see problems I`m looking for one .
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
63 se imparte exact la 21 deci restul impartirii numarului la 21 este restul impartirii lui 34 la 21 adica 13.Luiza wrote:Problema 22
Impartind un numar natural a la 63 obtinem restul 34 . Ce rest obtinem daca impartim numarul a la 21 ?
Last edited by Marius Mainea on Mon Jan 05, 2009 4:48 pm, edited 1 time in total.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
\( 2008^{2008}=2008^{2007}\cdot 2008=2008^{2007}\cdot(2009-1)=2009\cdot 2008^{2007}-2008^{2007}=2009\cdot 2008^{2007}-2008^{2006}\cdot 2008=2009\cdot 2008^{2007}-2008^{2006}(2009-1)= \)
\( =2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2008^{2006}=...=2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2009\cdot 2008^{2005}-...-2008= \)
\( =2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2009\cdot 2008^{2005}-...-2009+1=2009(2008^{2007}-2008^{2006}-...-1)+1 \)
Stiind ca 2009 este divizibil cu 49 rezulta ca restul este 1 .
\( =2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2008^{2006}=...=2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2009\cdot 2008^{2005}-...-2008= \)
\( =2009\cdot 2008^{2007}-2009\cdot 2008^{2006}-2009\cdot 2008^{2005}-...-2009+1=2009(2008^{2007}-2008^{2006}-...-1)+1 \)
Stiind ca 2009 este divizibil cu 49 rezulta ca restul este 1 .
My physiology : if I see a problem I solve it ; if I don`t see problems I`m looking for one .