Inegalitate (easy!)

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

Inegalitate (easy!)

Post by maxim bogdan »

Fie \( a,b,c\in\mathbb{R} \) astfel incat \( \sum_{cyc}\frac{1}{1+a^2}=2. \) Demonstrati ca este satisfacuta inegalitatea:

\( abc(a+b+c-abc)\leq\frac{5}{8}. \)
Feuerbach
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Deconditionam cu \( a=\sqrt{\frac{x}{y+z}} \) si analoagele si inegalitatea devine

\( \sqrt{\frac{xyz}{(x+y)(y+z)(z+x)}}\cdot\sum{\sqrt{\frac{x}{y+x}}}\le\frac{5}{8}+\frac{xyz}{(x+y)(y+z)(z+x)} \)

sau

\( 8\sqrt{xyz}\sum{\sqrt{x(x+y)(x+z)}}\le 5(x+y)(y+z)(z+x)+8xyz \)

sau

\( 8\sum{{x\sqrt{[y(x+z)][z(x+y)]}}\le18xyz+5\sum{xy(x+y)} \)

Insa din inegalitatea AM-GM \( LHS\le4\sum{x(yx+yz+zx+zy)}=24xyz+4\sum{xy(x+y)}=18xyz+6xyz+4\sum{xy(x+y)}\le18xyz+\sum{xy(x+y)}+4\sum{xy(x+y)}=RHS \)
Post Reply

Return to “Clasa a IX-a”