Dependenta

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Dependenta

Post by Marius Mainea »

Fie \( x,y,x \in \mathbb{R}^{\ast} \) astfel incat \( x+\frac{1}{x}=a;y+\frac{1}{y}=b;xy+\frac{1}{xy}=c \)

Demonstrati ca \( a^2+b^2+c^2=abc+4 \)
Last edited by Marius Mainea on Sat Jan 10, 2009 7:15 pm, edited 1 time in total.
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

\( abc+4=(x+\frac{1}{x})(y+\frac{1}{y})(xy+\frac{1}{xy})+4=(xy+\frac{x}{y}+\frac{y}{x}+\frac{1}{xy})(xy+\frac{1}{xy})+4=(xy+\frac{1}{xy})(xy+\frac{1}{xy})+(xy+\frac{1}{xy})(\frac{x}{y}+\frac{y}{x})+4=(xy+\frac{1}{xy})^2+ \)
\( +(xy\cdot \frac{x}{y}+xy\cdot \frac{y}{x}+\frac{1}{xy}\cdot \frac{x}{y}+\frac{1}{xy}\cdot \frac{y}{x})+4=(xy+\frac{1}{xy})^2+(x^2+y^2+\frac{1}{y^2}+\frac{1}{x^2})+2+2=(xy+\frac{1}{xy})^2+(x^2+2\cdot x\cdot \frac{1}{x}+\frac{1}{x^2})+(y^2+2\cdot y\cdot \frac{1}{y}+\frac{1}{y^2})= \)
\( =(xy+\frac{1}{xy})^2+(x+\frac{1}{x})^2+(y+\frac{1}{y})^2=a^2+b^2+c^2 \).
Post Reply

Return to “Clasa a VIII-a”