Inegalitate.

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate.

Post by Claudiu Mindrila »

Demonstrati ca pentru orice \( a,b,c>0 \) cu \( abc=1 \) avem: \( \sum \frac{a}{b+c+1} \geq 1 \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
maxim bogdan
Thales
Posts: 106
Joined: Tue Aug 19, 2008 1:56 pm
Location: Botosani

O solutie

Post by maxim bogdan »

Avem: \( \sum_{cyc}\frac{a}{b+c+1}=\sum_{cyc}\frac{a^2}{ab+ac+a}\geq\frac{(a+b+c)^2}{2(ab+bc+ca)+(a+b+c)} \) (am aplicat inegalitatea Cauchy-Buniakowski-Schwarz).

Mai ramane de aratat ca: \( \frac{(a+b+c)^2}{2(ab+bc+ca)+(a+b+c)}\geq 1\Longleftrightarrow a^2+b^2+c^2\geq a+b+c \)

Ultima inegalitate este adevarata deoarece: \( a^2+b^2+c^2\geq\frac{(a+b+c)^2}{3}\geq a+b+c\Longleftrightarrow a+b+c\geq 3, \) care rezulta imediat din inegalitatea mediilor.
Feuerbach
Post Reply

Return to “Clasa a VIII-a”