Ecuatie logaritmica 4

Moderators: Filip Chindea, Andrei Velicu, Radu Titiu

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Ecuatie logaritmica 4

Post by BogdanCNFB »

Fie \( a\in(0,1)\cup(1,\infty) \). Rezolvati ecuatia
\( \log_x (x+1)=\log_a (a+1) \).
Last edited by BogdanCNFB on Sat Feb 21, 2009 10:33 pm, edited 1 time in total.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

1) Daca a>1, atunci \( f : (1,+\infty) \rightarrow\mathbb{R} \) \( f(x)=\frac{\ln(x+1)}{\ln(x)} \) este stict descrescatoare, deci x=a solutie unica.

2) Daca a<1, notam \( b=\frac{1}{a} \), \( y=\frac{1}{x} \) si reducem la cazul precedent.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

Pentru \( x\in\(0,1\) \):

Functia \( \log_x(x+1) \) este strict descrescatoare pe ambele intervale \( \(0,1\) \) si \( \(1,\infty) \), iar \( \log_x(x+1)<0 \) daca \( x<1 \) si \( \log_x(x+1)>0 \) daca \( x>1 \), deci ecuatia are solutie unica \( a \).
n-ar fi rau sa fie bine :)
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

\( \log_x (x+1)=\log_a (a+1)\Rightarrow\frac{\log_a (x+1)}{\log_a x}=\log_a (a+1). \) Notam \( \log_a x=y\Rightarrow\frac{\log_a (a^y+1)}{y}=\log_a (a+1)\Rightarrow\frac{\log_a (a^y+1)}{\log_a (a+1)}=y\Rightarrow \)
\( \Rightarrow\log_{(a+1)} (a^y+1)=y\Rightarrow(a+1)^y=a^y+1\Rightarrow(\frac{a}{a+1})^y+(\frac{1}{a+1})^y=1\Rightarrow \) cu solutia unica \( y=1\Rightarrow x=a \) este solutie unica a ecuatiei.
Post Reply

Return to “Clasa a X-a”