Inegalitati cu sume de patrate
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Inegalitati cu sume de patrate
Fie \( a_1,a_2...a_n,b_1,b_2,...,b_n \) numere reale astfel incat
\( (a_1^2+a_2^2+...+a_n^2-1)(b_1^2+b_2^2+...+b_n^2-1)>(a_1b_1+a_2b_2+...+a_nb_n-1)^2 \).
Demonstrati ca \( a_1^2+...+a_n^2>1 \) si \( b_1^2+...+b_n^2>1 \).
\( (a_1^2+a_2^2+...+a_n^2-1)(b_1^2+b_2^2+...+b_n^2-1)>(a_1b_1+a_2b_2+...+a_nb_n-1)^2 \).
Demonstrati ca \( a_1^2+...+a_n^2>1 \) si \( b_1^2+...+b_n^2>1 \).
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutie
Sa presupunem contrariul. Daca doar unul din numerele \( a_{1}^2+\dots+a_{n}^2-1 \); \( b_{1}^2+\dots+b_{n}^2-1 \) este negativ atunci contradictia rezulta imediat. Deci mai ramane sa demonstram contrariul inegalitatii daca:
\( 1>a_{1}^2+\dots+a_{n}^2 \) si \( 1>b_{1}^2+\dots+b_{n}^2 \)
Din inegalitatea lui Aczel avem: \( (a_{1}^2+\dots+a_{n}^2-1)(b_{1}^2+\dots+b_{n}^2-1)\leq (a_{1}b_{1}+\dots+a_{n}b_{n}-1)^2 \), de unde rezulta contradictia dorita.
\( 1>a_{1}^2+\dots+a_{n}^2 \) si \( 1>b_{1}^2+\dots+b_{n}^2 \)
Din inegalitatea lui Aczel avem: \( (a_{1}^2+\dots+a_{n}^2-1)(b_{1}^2+\dots+b_{n}^2-1)\leq (a_{1}b_{1}+\dots+a_{n}b_{n}-1)^2 \), de unde rezulta contradictia dorita.
Last edited by maxim bogdan on Fri Jan 16, 2009 8:39 am, edited 1 time in total.
Feuerbach
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Incearca o demonstratie a inegalitatii lui Aczel. Nu stiu daca e prea cunoscuta, si nu cred ca poti sa o pui asa la olimpiada... dupa cate vad, cred ca merge cu principiul trinomului, asa ca e foarte simplu.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
INEGALITATEA LUI ACZEL
Fie \( a_{1},\dots, a_{n} \) si \( b_{1},\dots, b_{n} \) numere reale si fie \( A,B>0 \) astfel incat:
\( A^2\geq a_{1}^2+\dots+a_{n}^2 \) sau \( B^2\geq b_{1}^2+\dots+b_{n}^2. \) Atunci are loc inegalitatea:
\( (A^2-a_{1}^2-\dots-a_{n}^2)(B^2-b_{1}^2-\dots-b_{n}^2)\leq (AB-a_{1}b_{1}-\dots-a_{n}b_{n})^2. \)
Demonstratie. Se observa ca putem presupune faptul ca:
\( A^2>a_{1}^2+\dots+a_{n}^2 \) si \( B^2> b_{1}^2+\dots+b_{n}^2. \) In caz constrar \( LHS\leq 0 \) si inegalitatea este evidenta.
Din Inegalitatea Cauchy Schwarz obtinem:
\( a_{1}b_{1}+\dots+a_{n}b_{n}\leq\sqrt{a_{1}^2+\dots+a_{n}^2}\cdot\sqrt{ b_{1}^2+\dots+b_{n}^2}<AB \)
Notam \( a=a_{1}^2+\dots+a_{n}^2 \) si \( b=b_{1}^2+\dots+b_{n}^2. \) Mai ramane sa demonstram ca:
\( (A^2-a)(B^2-b)\leq (AB-\sqrt{ab})^2\Longleftrightarrow \)
\( \Longleftrightarrow \sqrt{(A^2-a)(B^2-b)}+\sqrt{ab}\leq AB \)
Dar din Inegalitatea Cauchy-Schwarz obtinem:
\( \sqrt{(A^2-a)(B^2-b)}+\sqrt{ab}\leq \sqrt{(a+A^2-a)(b+B^2-b)}=AB \),
de unde rezulta inegalitatea ceruta.
\( A^2\geq a_{1}^2+\dots+a_{n}^2 \) sau \( B^2\geq b_{1}^2+\dots+b_{n}^2. \) Atunci are loc inegalitatea:
\( (A^2-a_{1}^2-\dots-a_{n}^2)(B^2-b_{1}^2-\dots-b_{n}^2)\leq (AB-a_{1}b_{1}-\dots-a_{n}b_{n})^2. \)
Demonstratie. Se observa ca putem presupune faptul ca:
\( A^2>a_{1}^2+\dots+a_{n}^2 \) si \( B^2> b_{1}^2+\dots+b_{n}^2. \) In caz constrar \( LHS\leq 0 \) si inegalitatea este evidenta.
Din Inegalitatea Cauchy Schwarz obtinem:
\( a_{1}b_{1}+\dots+a_{n}b_{n}\leq\sqrt{a_{1}^2+\dots+a_{n}^2}\cdot\sqrt{ b_{1}^2+\dots+b_{n}^2}<AB \)
Notam \( a=a_{1}^2+\dots+a_{n}^2 \) si \( b=b_{1}^2+\dots+b_{n}^2. \) Mai ramane sa demonstram ca:
\( (A^2-a)(B^2-b)\leq (AB-\sqrt{ab})^2\Longleftrightarrow \)
\( \Longleftrightarrow \sqrt{(A^2-a)(B^2-b)}+\sqrt{ab}\leq AB \)
Dar din Inegalitatea Cauchy-Schwarz obtinem:
\( \sqrt{(A^2-a)(B^2-b)}+\sqrt{ab}\leq \sqrt{(a+A^2-a)(b+B^2-b)}=AB \),
de unde rezulta inegalitatea ceruta.
Feuerbach
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
\( (A^2-a_{1}^2-\dots-a_{n}^2)(B^2-b_{1}^2-\dots-b_{n}^2)\leq(AB-a_{1}b_{1}-\dots-a_{n}b_{n})^2. \)
Consideram polinomul de gradul II \( p(X)=(A^2-a_{1}^2-\dots-a_{n}^2)X^2+(AB-a_{1}b_{1}-\dots-a_{n}b_{n})X+(B^2-b_{1}^2-\dots-b_{n}^2) \). Se observa foarte clar ca inegalitatea data e echivalenta cu faptul ca discriminantul acestui polinom este pozitiv. Pentru aceasta este suficient sa gasim o radacina reala a polinomului.
\( p(X)=(AX+B)^2-\sum_{i=1}^n (a_iX+b_i)^2. \).
Deci, folosind enuntul \( p(0)\geq 0 \) si \( p(-\frac{B}{A})\leq 0 \). Aceasta arata existenta unei radacini reale si concluzia problemei.
Consideram polinomul de gradul II \( p(X)=(A^2-a_{1}^2-\dots-a_{n}^2)X^2+(AB-a_{1}b_{1}-\dots-a_{n}b_{n})X+(B^2-b_{1}^2-\dots-b_{n}^2) \). Se observa foarte clar ca inegalitatea data e echivalenta cu faptul ca discriminantul acestui polinom este pozitiv. Pentru aceasta este suficient sa gasim o radacina reala a polinomului.
\( p(X)=(AX+B)^2-\sum_{i=1}^n (a_iX+b_i)^2. \).
Deci, folosind enuntul \( p(0)\geq 0 \) si \( p(-\frac{B}{A})\leq 0 \). Aceasta arata existenta unei radacini reale si concluzia problemei.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
Re: INEGALITATEA LUI ACZEL
Inegalitatile Aczel.
Fie numerele reale \( a_{k} \) , \( b_k \) , unde \( k\in\overline {1,n} \) pentru care notam \( a=\sum _{k=1}^na^2_k \) , \( b=\sum _{k=1}^nb^2_k \) ,
\( s=\sum_{k=1}^n\left(a_k+b_k\right)^2 \) , \( p=\sum_{k=1}^{n}a_kb_k \) si doua numere reale pozitive \( A \) , \( B \) pentru care
\( A^2\ge a \) si \( B^2\ge b \) . Atunci au loc inegalitatile \( \begin{array}{cc}
\nearrow\ \odot\ \ & \left(A^2-a\right)\left(B^2-b\right)\ \le\ \left(AB-p\right)^2\\\\
\searrow\ \odot\ \ & \sqrt {A^2-a}+\sqrt {B^2-b}\ \le\ \sqrt {(A+B)^2-s}\end{array} \)
Last edited by Virgil Nicula on Wed Jan 28, 2009 11:29 pm, edited 1 time in total.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Se ridica la patrat a a doua inegalitate, si dupa reduceri se obtine radical din prima.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
**** EROARE ****
Last edited by Virgil Nicula on Sun Jan 18, 2009 9:55 am, edited 10 times in total.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)