Prima ar fi:
1. z1,z2,z3 apartin numerelor complexe.
|z1|=|z2|=|z3|=1
z1+z2+z3=-i
a)Calculati (z1+i)(z2+i)(z3+i)
b)S=z1 la puterea 2007+z2 la puterea 2007+z3 la puterea 2007
Si a doua problema
2.Fie a,b,c>1 cu proprietatea ca 2*\( \log_{ab} \)=1+\( \log_{ac} \)
Demonstrati ca:
1-\( \log_{abc}(bc) \); 1-\( \log_{bca}(ac) \); 1-\( \log_{cba}(ab) \) sunt in progresie aritmetica
Va multumesc
Doua probleme nerezolvate
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
Doua probleme nerezolvate
Last edited by Merqs on Sun Jan 18, 2009 8:48 pm, edited 2 times in total.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
-
andy crisan
- Pitagora
- Posts: 56
- Joined: Sun Dec 28, 2008 5:50 pm
- Location: Pitesti
se conjuga \( z_1+z_2+z_3=-i \) si se obtine folosind faptul ca \( z\overline{z}=|z|^2=1 \) in cazul nostru si obtinem ca \( z_1z_2+z_2z_3+z_3z_1=iz_1z_2z_3 \) se desfac parantezele si obtii in final folosind relatia anterioara si cea din enunt ca P=0 asta pt a
pt b) ai asa din P=0 \( \Rightarrow \)ca unul din \( z_1,z_2,z_3=-i \) si consideram \( z_1=-i \) in celelalte cazuri procedandu-se analog \( \Rightarrow z_2+z_3=0\Rightarrow z_2=-z_3 \Rightarrow z_2^{2007}=-z_3^{2007} si z_1^{2007}= -i^{2007}=-i^3=i \Rightarrow S=i \) problema asta e de clasa nu de olimpiade
pt b) ai asa din P=0 \( \Rightarrow \)ca unul din \( z_1,z_2,z_3=-i \) si consideram \( z_1=-i \) in celelalte cazuri procedandu-se analog \( \Rightarrow z_2+z_3=0\Rightarrow z_2=-z_3 \Rightarrow z_2^{2007}=-z_3^{2007} si z_1^{2007}= -i^{2007}=-i^3=i \Rightarrow S=i \) problema asta e de clasa nu de olimpiade
Last edited by andy crisan on Mon Jan 19, 2009 10:59 pm, edited 5 times in total.