Sir recurent

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Sir recurent

Post by mihai++ »

Se considera sirul \( x_n=\alpha^n+\alpha^{-n} \), unde \( n\in N \) si \( \alpha=2+sqrt{3} \).
a) Sa se arate ca exista \( a,b\in R \) astfel incat \( x_{n+2}=ax_{n+1}+bx_n \), pentru orice \( n\in N \).
b) Sa se arate ca \( {\alpha^n}=1-\alpha^n \), pentru orice \( n\in N \).
Post Reply

Return to “Clasa a IX-a”