Fie \( a,b \in \mathbb R \). Să se determine funcţiile \( f: \mathbb {R} \rightarrow {\mathbb R} \) care îndeplinesc simultan condiţiile:
a) \( f(x+1)=f(x) +1, \ \forall x \in {\mathbb R}; \)
b) \( f(x)=b, \ \forall x \in [a,a+1). \)
Florian Dumitrel, OLM 2008 Olt
Ecuatie functionala
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
Marius Perianu
- Euclid
- Posts: 40
- Joined: Thu Dec 06, 2007 11:40 pm
- Location: Slatina
Ecuatie functionala
Marius Perianu
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Se demonstreaza usor prin inductie ca \( f(x+k)=f(x)+k,\ \forall x \in \mathbb{R},\ \forall k \in \mathbb{Z} \) si \( f(x)=b+k,\ \forall x \in [a+k,a+k+1) \).
Cum \( \mathbb{R}=\bigcup_{k \in \mathbb{Z}} [a+k,a+k+1) \) problema este gata.
Cum \( \mathbb{R}=\bigcup_{k \in \mathbb{Z}} [a+k,a+k+1) \) problema este gata.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Marius Perianu
- Euclid
- Posts: 40
- Joined: Thu Dec 06, 2007 11:40 pm
- Location: Slatina