1. Demonstrati ca \( 0 \leq (z_1+z_2+...+z_n)(\frac{1}{z_1}+\frac{1}{z_2}+...+\frac{1}{z_n}) \leq n^2 \), unde \( |z_1|=|z_2|=...=|z_n|=1 \)
Gh. Andrei
2. \( |z_0-z_1|^2+|z_0-z_2|^2+...+|z_0-z_n|^2 \leq |z-z_1|^2+ |z-z_2|^2+...+|z-z_n|^2, \) unde \( z_0=\frac{z_1+z_2+...+z_n}{2}, z,z_1,z_2,...,z_n \in\mathbb{C}, n \geq 2 \).
Gh. Andrei
Doua inegalitati cu numere complexe
Moderators: Filip Chindea, Andrei Velicu, Radu Titiu
-
Razvan Balan
- Euclid
- Posts: 16
- Joined: Tue Feb 19, 2008 10:10 pm
Doua inegalitati cu numere complexe
Last edited by Razvan Balan on Thu Feb 28, 2008 10:44 pm, edited 1 time in total.
-
Razvan Balan
- Euclid
- Posts: 16
- Joined: Tue Feb 19, 2008 10:10 pm