Limite de siruri in inegalitati

Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi

Post Reply
User avatar
Radu Titiu
Thales
Posts: 155
Joined: Fri Sep 28, 2007 5:05 pm
Location: Mures \Bucuresti

Limite de siruri in inegalitati

Post by Radu Titiu »

Fie \( (x_n)_{n\geq 1} \), \( (y_n)_{n\geq 1} \) doua siruri de numere reale strict pozitive astfel incat pentru orice n natural nenul,
\( x_{n+1}\geq \frac{x_n+y_n}{2}, \) \( \ y_{n+1}\geq \sqrt{\frac{x_n^2+y_n^2}{2}}. \)

a) Sa se arate ca sirurile \( (x_n+y_n)_{n\geq 1} \) si \( (x_ny_n)_{n\geq 1} \) au limita.
b)Sa se arate ca sirurile x_n si y_n au limita si limitele lor sune egale.

Dan Marinescu, Viorel Cornea, Olimpiada Judeteana 2008
A mathematician is a machine for turning coffee into theorems.
Post Reply

Return to “Analiza matematica”