Seria lui Euler zeta(2)=pi^2/6 via integrala din cos

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Seria lui Euler zeta(2)=pi^2/6 via integrala din cos

Post by Cezar Lupu »

Sa se demonstreze ca pentru orice \( n\in\mathbb{N}^{*} \) are loc egalitatea:

\( \int_{0}^{\frac{\pi}{4}}x^2\cos^{2n}xdx=\frac{1\cdot 3\cdot 5\ldots (2n-1)}{2\cdot 4\ldots (2n)}\cdot\frac{\pi}{4}\left(\frac{\pi^2}{6}-\sum_{k=1}^{n}\frac{1}{k^2}\right) \).

Folosind, eventual, rezultatul de mai sus, sa se deduca

\( \lim_{n\to\infty}\sum_{k=1}^{n}\frac{1}{k^{2}}=\frac{\pi^2}{6} \).
Last edited by Cezar Lupu on Tue Feb 17, 2009 2:55 pm, edited 1 time in total.
Kunihiko Chikaya
Arhimede
Posts: 7
Joined: Sun Feb 03, 2008 7:06 pm
Location: Tokio

Post by Kunihiko Chikaya »

You can see the solution here.
Post Reply

Return to “Analiza matematica”