Este x rational?

Moderators: Bogdan Posa, Laurian Filip

Post Reply
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Este x rational?

Post by Marius Dragoi »

Daca \( x\in R \) si \( x^{2003} = x^{2002} + 1 \), atunci \( x \) este rational?
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Se observa destul de usor ca \( x>1 \).
Daca \( x \in Q \) , atunci \( x= \frac{p}{q} \) unde \( p,q \in Z \) cu \( p>q \) si \( \left\( p,q \right\) =1 \).
Din ipoteza avem: \( \frac {p^{2003}}{q^{2003}} =\frac {p^{2002}}{q^{2002}} + 1 \Rightarrow p^{2003}=q(p^{2002}+q^{2002}) \Rightarrow q|p^{2003} \) contradictie cu \( \left\( p,q \right\) =1 \) \( \Rightarrow x \in {R-Q} \) :)
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
Post Reply

Return to “Clasa a VII-a”