Page 1 of 1
Este x rational?
Posted: Sun Mar 16, 2008 1:01 am
by Marius Dragoi
Daca \( x\in R \) si \( x^{2003} = x^{2002} + 1 \), atunci \( x \) este rational?
Posted: Tue Mar 18, 2008 1:45 pm
by Marius Dragoi
Se observa destul de usor ca
\( x>1 \).
Daca
\( x \in Q \) , atunci
\( x= \frac{p}{q} \) unde
\( p,q \in Z \) cu
\( p>q \) si
\( \left\( p,q \right\) =1 \).
Din ipoteza avem:
\( \frac {p^{2003}}{q^{2003}} =\frac {p^{2002}}{q^{2002}} + 1 \Rightarrow p^{2003}=q(p^{2002}+q^{2002}) \Rightarrow q|p^{2003} \) contradictie cu
\( \left\( p,q \right\) =1 \) \( \Rightarrow x \in {R-Q} \) 