Page 1 of 1

Produsul cifrelor unui numar

Posted: Tue Mar 18, 2008 12:13 pm
by Bogdan Posa
Pentru \( n \in N ^ * \) notam cu p(n) produsul cifrelor nenule ale lui n (daca n are o singura cifra nenula atunci p(n) este acea cifra. Ex: p(50)=5).
Aratati ca \( p(1)+p(2)+p(3)+ ...+p(100) \) este patrat perfect.

Concursul TMMATE 2008

Posted: Sat Mar 29, 2008 9:10 pm
by Beniamin Bogosel
Avem
\( p(1)=1...p(9)=9\Rightarrow \sum_{i=1}^9p(i)=45 \)
\( p(\overline{a1})=a...p(\overline{a9})=9\cdot a \), deci \( \sum_{i=0}^9p(\overline{ai})=46\cdot a \).
Deci suma cautata este \( 45+46\cdot 45+1=45\cdot 47+1=46^2 \).
Deci suma este patrat perfect, nu cub perfect, cred. Am facut calculul si cu calculatorul si tot asta imi da.

Posted: Tue May 20, 2008 6:46 pm
by Claudiu Mindrila
In R.M.T. 2/2008 este o problema cu aceeasi enunt in care doar concluzia difera. In acea problema trebuie aratat ca suma este patrat perfect. Probabil este o greseala in subiectul de la TMMATE. :roll:

Posted: Tue May 20, 2008 7:50 pm
by Bogdan Posa
Claudiu Mindrila wrote:In R.M.T. 2/2008 este o problema cu aceeasi enunt in care doar concluzia difera. In acea problema trebuie aratat ca suma este patrat perfect. Probabil este o greseala in subiectul de la TMMATE. :roll:
Daca imi aduc bine aminte scrie in josul paginii ( aceste probleme au fost date la concursul TMMATE :P )....Am corectat patrat perfect ( nu cub perfect )