Inegalitate integrala de tip Cauchy si cu derivata

Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitate integrala de tip Cauchy si cu derivata

Post by Cezar Lupu »

Fie \( f:[0,1]\to\mathbb{R} \) o functie de clasa \( C^{1} \) pe intervalul \( [0,1] \). Sa se demonstreze ca

\( \int_0^1f^{2}(x)dx-\left(\int_0^1f(x)dx\right)^{2}\leq \int_0^1|f^{\prime}(x)|dx\left(M-\int_0^1f(x)dx\right) \),

unde \( M=\sup_{x\in [0,1]}f(x) \).
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
o.m.
Euclid
Posts: 32
Joined: Sun Apr 27, 2008 2:16 pm

Post by o.m. »

:idea:


\( K=[0;1]^2 \)

LHS is equal

\( \frac{1}{2}\int\int_{K}(f(x)-f(y))^2dxdy \)

use this for the inequality and
\( f(x)-f(y)=\int_{y}^{x}f^{\prime}(t)dt \)
Post Reply

Return to “Analiza matematica”