Fie \( f:[0,1]\to\mathbb{R} \) o functie de clasa \( C^{1} \) pe intervalul \( [0,1] \). Sa se demonstreze ca
\( \int_0^1f^{2}(x)dx-\left(\int_0^1f(x)dx\right)^{2}\leq \int_0^1|f^{\prime}(x)|dx\left(M-\int_0^1f(x)dx\right) \),
unde \( M=\sup_{x\in [0,1]}f(x) \).
Inegalitate integrala de tip Cauchy si cu derivata
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
Inegalitate integrala de tip Cauchy si cu derivata
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.