Gasiti o infinitate de numere naturale\( n \), care nu se termina cu 0, astfel incat \( s(n)=s(n^2) \).
( \( s(n) \)=suma cifrelor lui \( n \) )
s(n)
Moderators: Bogdan Posa, Laurian Filip
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
Observam ca orice numar de forma \( 10^k-1 \) are aceasta proprietate.
Evident \( S(n)=9k. \)
\( n^2={(10^k-1)}^2=10^{2k}-2*{10}^k+1 \)
\( n^2=99...98000...01 \)
cu \( (k-1) \) de \( 9 \)
\( s(n^2)=9k=s(n) \)
Evident \( S(n)=9k. \)
\( n^2={(10^k-1)}^2=10^{2k}-2*{10}^k+1 \)
\( n^2=99...98000...01 \)
cu \( (k-1) \) de \( 9 \)
\( s(n^2)=9k=s(n) \)
Last edited by Laurian Filip on Sun Apr 06, 2008 8:48 am, edited 1 time in total.
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact: