Concursul "Al. Myller" problema 1

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Concursul "Al. Myller" problema 1

Post by Bogdan Cebere »

Determinaţi numărul soluţiilor ecuaţiei \( {\frac{[x]}{{\{x\}}}}={\frac{2007x}{2008}} \).

Mihail Bălună
User avatar
Laurian Filip
Site Admin
Posts: 344
Joined: Sun Nov 25, 2007 2:34 am
Location: Bucuresti/Arad
Contact:

Post by Laurian Filip »

rezolvam pt cele pozitive prima data.

\( x=a+b \) , cu \( a \in N \) si \( b \in [0,1) \)

Daca x este natural \( \lbrace \)\( x}=0 \) si fractia nu are sens. Deci \( b \in (0,1). \)
Daca \( x\in (0,1) \) at \( x=0 \) contradictie. Deci \( x>1 \)

\( 2008a=2007(a+b)b \)
\( 2007b^2+2007ab-2008a=0 \)

\( \Delta=2007^2a^2+4\cdot 2007\cdot 2008a \)

\( b=\frac{-2007a+-\sqrt \Delta }{4014} \)

cum b este pozitiv avem doar cazul cu +

\( b=\frac{-2007a+\sqrt \Delta }{4014} \)

din \( b<1 \) avem
\( 4014+2007a>\sqrt{2007^2a^2+4\cdot 2007\cdot 2008a \)
\( 2007^2\cdot 4+4\cdot 2007^2a+2007^2a^2>2007^2a^2+4\cdot 2007\cdot 2008a \)
\( 2007^2\cdot 4>4\cdot 2007 a \)
\( 2007>a \)

de unde aflam ca are 2006 solutii pozitive. Banuiesc ca iese cam analog si pt negative.
Last edited by Laurian Filip on Wed Apr 16, 2008 4:17 pm, edited 1 time in total.
mihai++
Bernoulli
Posts: 206
Joined: Wed Nov 28, 2007 8:08 pm
Location: Focsani

Post by mihai++ »

pe negative iese o contradictie usoara tot din \( b<1 \).
nu cred ca e nevoie de pasul acela cu \( x\in\left(0,1\right) \), dar daca il pui atunci implica \( x=0 \)
n-ar fi rau sa fie bine :)
Bogdan Cebere
Thales
Posts: 145
Joined: Sun Nov 04, 2007 1:04 pm

Post by Bogdan Cebere »

Dacă \( x < 0 \), atunci \( \frac{[x]}{\{x\}}<[x] \leq x < \frac{2007x}{2008} \), deci nu sunt solutii.
Post Reply

Return to “Clasa a IX-a”