sin si cos

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

sin si cos

Post by BogdanCNFB »

Fie \( a,b\in (0,\infty) \) si \( x\in R \) astfel incat \( \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b} \). Sa se arate ca \( \frac{\sin^8x}{a}+\frac{\cos^8x}{b}=\frac{1}{(a+b)^3} \).
Virgil Nicula
Euler
Posts: 622
Joined: Fri Sep 28, 2007 11:23 pm

Post by Virgil Nicula »

Recomand userilor debutanti sa fie foarte atenti in redactarea problemelor. Poate asa ar fi fost corect enuntul :
BogdanCNFB wrote: Fie \( a,b\in (0,\infty) \) si \( x\in R \) astfel incat \( \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b} \). Sa se arate ca \( \underline {\overline {\left\|\ \frac{\sin^8x}{a^3}+\frac{\cos^8x}{b^3}=\frac{1}{(a+b)^3}\ \right\|}} \).
Exercitiul pe care il cunosc eu este o usoara extindere a celui de sus :
Fie \( n\in\mathbb N \) , \( a,b\in (0,\infty) \) si \( x\in R \) astfel incat \( \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b} \). Sa se arate ca \( \underline {\overline {\left\|\ \frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1}}\ \right\|}} \).
Demonstratie. Folosim identitatile cunoscute \( \left\|\begin{array}{c}
4\sin^4x=(2\sin^2x)^2=(1-\cos 2x)^2\\\\
4\cos^4x=(2\cos^2x)^2=(1+\cos 2x)^2\end{array} \)
. Asadar, \( \underline {\overline {\left|\ \frac{\sin^4x}{a}+\frac{\cos^4x}{b}=\frac{1}{a+b}\ \right|}}\ \Longleftrightarrow \)

\( b(a+b)(1-\cos 2x)^2+a(a+b)(1+\cos 2x)^2=4ab\ \Longleftrightarrow\ (a+b)^2\cos^22x+2(a^2-b^2)\cos 2x+(a-b)^2=0\ \Longleftrightarrow \)

\( \left[(a+b)\cos 2x+(a-b)\right]^2=0\ \Longleftrightarrow\ \underline {\overline {\left|\ \cos 2x=\frac {b-a}{b+a}\ \right|}} \) . Prin urmare, \( \left\|\begin{array}{c}
\sin^2x=\frac {a}{a+b}\\\\
\cos^2x=\frac {b}{a+b}\end{array}\ \Longrightarrow\ \frac{\sin^{2n}x}{a^{n-1}}+\frac{\cos^{2n}x}{b^{n-1}}=\frac {1}{(a+b)^{n-1} \)
.
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

de unde am "cules" problema, era cu a si b fara ridicare la a3a. Poate e acolo gresita!
cosmin
Euclid
Posts: 19
Joined: Wed Oct 24, 2007 1:32 pm
Location: Otelu-Rosu

Post by cosmin »

Adica ai cules-o din Gazeta Matematica (numarul 4) :D
Post Reply

Return to “Clasa a 9-a”