O problema de divizibilitate cu 7

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

O problema de divizibilitate cu 7

Post by BogdanCNFB »

Fie \( x,y\in Z \) astfel ca \( 7\mid x^3+x^2\cdot y+x\cdot y^2+y^3 \). Sa se arate ca \( 343\mid x^3+x^2\cdot y+x\cdot y^2+y^3 \).
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Incearca \( x=3,y=4 \). Atunci \( x^3+x^2y+xy^2+y^3=(x+y)(x^2+y^2)=175 \), care e divizibil cu 7 si nu e cu 343...
moldovan ana
Pitagora
Posts: 54
Joined: Wed Sep 23, 2009 4:10 pm

Post by moldovan ana »

Este problema co4933 din GM n4/2008 care la solutie are erata dar si asa solutia data se contrazice cu ipoteza
Post Reply

Return to “Teoria Numerelor”