Fie x,y,z numere pozitive cu x+y+z=1. Demonstrati ca:
\( \frac{x^2-yz}{x^2+x} \)+\( \frac{y^2-zx}{y^2+y} \)+\( \frac{z^2-xy}{z^2+z} \)\( \leq \)\( 0. \)
Marius Mainea (rev. Arhimede 7-8 /2004)
Inegalitate conditionata
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Marius Dragoi
- Thales
- Posts: 126
- Joined: Thu Jan 31, 2008 5:57 pm
- Location: Bucharest
\( \frac{x^2-yz}{x^2+x} \)+\( \frac{y^2-zx}{y^2+y} \)+\( \frac{z^2-xy}{z^2+z} \)\( \leq \)\( 0 \Leftrightarrow \sum_{cyc}{} {\frac {x}{x+1}} \) \( \leq \) \( \sum_{cyc}{} {\frac {xy}{x(x+1)}} \)
Aducand la acelasi numitor, mai ramane de demonstrat ca: \( 3{(xyz)}^2+ xyz + 2xyz \sum_{cyc}{} {xy} \leq \sum_{cyc}{} {x^3y^3} + \sum_{cyc}{} {(x^3y^2+x^3z^2)} + \sum_{cyc}{} {x^2y^2} \)
dar: \( \sum_{cyc}{} {x^3y^3} \geq 3{(xyz)}^2 \) (1)
\( \sum_{cyc}{} {(x^3y^2+x^3z^2)} = \sum_{cyc}{} {x^3(y^2+z^2)} \geq \sum_{cyc}{} {2x^3yz} = 2xyz \sum_{cyc}{} {x^2} \geq 2xyz \sum_{cyc}{} {xy} \) (2)
\( \sum_{cyc}{} {x^2y^2} = \sum_{cyc}{} {\frac {x^2(y^2+z^2)}{2}} \geq \sum_{cyc}{} {x^2yz} = xyz(x+y+z)=xyz \) (3)
Din (1) , (2) si (3) obtinem concluzia.
Aducand la acelasi numitor, mai ramane de demonstrat ca: \( 3{(xyz)}^2+ xyz + 2xyz \sum_{cyc}{} {xy} \leq \sum_{cyc}{} {x^3y^3} + \sum_{cyc}{} {(x^3y^2+x^3z^2)} + \sum_{cyc}{} {x^2y^2} \)
dar: \( \sum_{cyc}{} {x^3y^3} \geq 3{(xyz)}^2 \) (1)
\( \sum_{cyc}{} {(x^3y^2+x^3z^2)} = \sum_{cyc}{} {x^3(y^2+z^2)} \geq \sum_{cyc}{} {2x^3yz} = 2xyz \sum_{cyc}{} {x^2} \geq 2xyz \sum_{cyc}{} {xy} \) (2)
\( \sum_{cyc}{} {x^2y^2} = \sum_{cyc}{} {\frac {x^2(y^2+z^2)}{2}} \geq \sum_{cyc}{} {x^2yz} = xyz(x+y+z)=xyz \) (3)
Din (1) , (2) si (3) obtinem concluzia.
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
The Faculty of Automatic Control and Computers
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)