1. In afara triunghiului \( A \) - dreptunghic \( ABC \) se construiesc patratele \( ABMN \) si \( ACPQ \) .
Notam intersectiile \( T\in BP\cap CM \) , \( R\in AB\cap CM \) , \( S\in AC\cap BP \) . Sa se arate ca
\( \frac {[CST]}{b^3}=\frac {[BRT]}{c^3}=\frac {[BCT]}{bc(b+c)}=\frac {bc}{2(b+c)(b^2+bc+c^2)} \) si \( [BCT]=[ASTR] \) .
Observatie. Am folosit notatiile standard : \( AB=c \) , \( AC=b \) si aria \( [XYZ] \) a triunghiului \( XYZ \) .
2. Se considera un triunghi \( ABC \) . Pentru \( M\in (BC) \) notam
\( \left\|\begin{array}{ccc}
N\in AC & , & MN\parallel AB\\\\
P\in AB & , & MP\parallel AC\end{array} \) , \( \left\|\begin{array}{c}
X\in MP\cap BN\\\
Y\in MN\cap CP\\\
Z\in BN\cap CP\end{array} \) . Sa se arate ca \( [MXZY]=[PZN] \) .
Observatie. Mai exact, daca notam \( \frac {MB}{MC}=m \) , atunci avem lantul de rapoarte egale :
\( \frac {[PXZ]}{m^3}=\frac {[NYZ]}{1}=\frac {[PZN]}{m(m+1)} \) \( =\frac {[XMYZ]}{m(m+1)}=\frac {[MNP]}{(m+1)(m^2+m+1)}=\frac {m}{(m+1)^3(m^2+m+1)} \) .
Arii egale si nu numai ...
Moderators: Bogdan Posa, Laurian Filip
-
Virgil Nicula
- Euler
- Posts: 622
- Joined: Fri Sep 28, 2007 11:23 pm
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Pentru problema 1:
Din asemanarea triunghiurilor MBR si CAR rezulta BR=\( \frac{c^2}{b+c} \) si analog CS=\( \frac{b^2}{b+c} \)
Rezulta AR=AS=\( \frac{bc}{b+c} \).
Din teorema lui Menelaus rezulta \( \frac{RT}{TC}=\frac{c^2}{b(b+c)} \) si de aici [BRT]=[BTC]\( \frac{c^2}{b(b+c)} \)
Analog [CST]=[BTC]\( \frac{b^2}{c(b+c)} \)
[ARC]=\( \frac{b^2c}{2(b+c)} \)
Rezulta [BRC]=[ARC]
Deci [ARTC]=[BTC]
Notand [BTC] cu S avem : 2S+S\( \frac{c^2}{b(b+c)} \)+S\( \frac{b^2}{c(b+c)} \)=\( \frac{bc}{2} \)
Rezulta S=\( \frac{b^2c^2}{2(b^2+bc+c^2)} \) si cu aceasta problema 1 este rezovata.
Din asemanarea triunghiurilor MBR si CAR rezulta BR=\( \frac{c^2}{b+c} \) si analog CS=\( \frac{b^2}{b+c} \)
Rezulta AR=AS=\( \frac{bc}{b+c} \).
Din teorema lui Menelaus rezulta \( \frac{RT}{TC}=\frac{c^2}{b(b+c)} \) si de aici [BRT]=[BTC]\( \frac{c^2}{b(b+c)} \)
Analog [CST]=[BTC]\( \frac{b^2}{c(b+c)} \)
[ARC]=\( \frac{b^2c}{2(b+c)} \)
Rezulta [BRC]=[ARC]
Deci [ARTC]=[BTC]
Notand [BTC] cu S avem : 2S+S\( \frac{c^2}{b(b+c)} \)+S\( \frac{b^2}{c(b+c)} \)=\( \frac{bc}{2} \)
Rezulta S=\( \frac{b^2c^2}{2(b^2+bc+c^2)} \) si cu aceasta problema 1 este rezovata.