Fie \( f:[0,\infty) \rightarrow R \) o functie continua cu proprietatea ca \( f(x+1)=f(x),\forall x\geq 0 \). Daca \( g:[0,1] \rightarrow R \) este o functie continua oarecare, atunci aratati ca
\( \lim_{n\to\infty} \int_{0}^{1}g(x)f(nx)dx=( \int_{0}^{1}g(x)dx )( \int_{0}^{1}f(x)dx ) \).
Limite...si...integrale
Moderators: Bogdan Posa, Beniamin Bogosel, Marius Dragoi
- bogdanl_yex
- Pitagora
- Posts: 91
- Joined: Thu Jan 31, 2008 9:58 pm
- Location: Bucuresti
Limite...si...integrale
"Don't worry about your difficulties in mathematics; I can assure you that mine are still greater"(Albert Einstein)
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
- Cezar Lupu
- Site Admin
- Posts: 612
- Joined: Wed Sep 26, 2007 2:04 pm
- Location: Bucuresti sau Constanta
- Contact:
De fapt, ca sa n-o mai lungim atata, problema este caz particular al lemei lui Fejer. Vezi aici.MARIUS MAINEA wrote:Caz particular al problemei propusa la IMC / 1994 si caz general al problemei propusa de Cristinel Mortici la OJM / 2002.
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.