Inegalitate intr-un triunghi

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Inegalitate intr-un triunghi

Post by Claudiu Mindrila »

Daca \( a,b,c \) sunt lungimile laturilor unui triunghi iar \( p \) semiperimetrul sau, sa se demonstreze ca \( \frac{a^2}{p-a}+\frac{b^2}{p-b}+\frac{c^2}{p-c} \geq 4p \)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Marius Dragoi
Thales
Posts: 126
Joined: Thu Jan 31, 2008 5:57 pm
Location: Bucharest

Post by Marius Dragoi »

Se aplica Cauchy o singura data...si gata. :D
Politehnica University of Bucharest
The Faculty of Automatic Control and Computers
User avatar
BogdanCNFB
Thales
Posts: 121
Joined: Wed May 07, 2008 4:29 pm
Location: Craiova

Post by BogdanCNFB »

\( \sum\frac{a^2}{p-a}\cdot\sum(p-a)\ge(\sum a)^2\Rightarrow\sum\frac{a^2}{p-a}\ge\frac{(\sum a)^2}{\sum(p-a)}=\frac{(2p)^2}{3p-a-b-c}=\frac{4p^2}{p}=4p \)
Post Reply

Return to “Clasa a VII-a”