Cel putin 2^(n/2) inegalitati sunt adevarate

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Cel putin 2^(n/2) inegalitati sunt adevarate

Post by Filip Chindea »

Fie \( n \) un numar intreg pozitiv par. Sa se arate ca exista cel putin \( 2^{n/2} \) alegeri ale semnelor \( \pm \) astfel incat

\( \pm \ x^n \ \pm \ \cdots \ \pm \ x \ < \ 1/2 \)

are loc oricare ar fi \( x \) real.

[ Teste tip OIM 2008 - Problema 1/Test 4 ]
Life is complex: it has real and imaginary components.
Post Reply

Return to “Inegalitati”