Fie \( n \) reale pozitive \( a_j \) cu suma \( 1 \). Aratati ca
\( \sum \frac{a_j}{1 + a_1 + \cdots + a_j} < \frac{1}{\sqrt{2}} \).
[ Radu Gologan - Teste tip OIM 2008 - Problema 2/Test 2 ]
Suma non-standard
Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Suma non-standard
Life is complex: it has real and imaginary components.
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Aplicam CBS.
\( \sum {\frac{a_j}{1+a_1+...+a_j}}=\sum {\frac{\sqrt{a_j}}{1+a_1+...+a_j}\sqrt{a_{j}}}\leq \sqrt{(\sum {\frac{a_j}{(1+a_1+...+a_j)^2}})(\sum {a_j})}< \)
\( <\sqrt{\sum {\frac{a_j}{(1+a_1+...+a_{j-1})(1+a_1+...+a_j)}}}=\sqrt{{\sum {(\frac{1}{1+a_1+...+a_{j-1}}-\frac{1}{1+a_1+...+a_j}})}}= \)
\( =\sqrt{1-\frac{1}{1+a_1+...+a_n}}=\frac{1}{\sqrt{2}} \).
\( \sum {\frac{a_j}{1+a_1+...+a_j}}=\sum {\frac{\sqrt{a_j}}{1+a_1+...+a_j}\sqrt{a_{j}}}\leq \sqrt{(\sum {\frac{a_j}{(1+a_1+...+a_j)^2}})(\sum {a_j})}< \)
\( <\sqrt{\sum {\frac{a_j}{(1+a_1+...+a_{j-1})(1+a_1+...+a_j)}}}=\sqrt{{\sum {(\frac{1}{1+a_1+...+a_{j-1}}-\frac{1}{1+a_1+...+a_j}})}}= \)
\( =\sqrt{1-\frac{1}{1+a_1+...+a_n}}=\frac{1}{\sqrt{2}} \).
Last edited by Marius Mainea on Sun Jul 13, 2008 3:18 pm, edited 1 time in total.
- Filip Chindea
- Newton
- Posts: 324
- Joined: Thu Sep 27, 2007 9:01 pm
- Location: Bucharest
Corect! Remarcati si ca in cazul \( a_1 = \cdots = a_n = 1/n \) limita membrului stang este \( \log(2) \approx 0.69 < 0.71 \approx 1/\sqrt{2} \), deci este surprinzator de "sharp" pentru modul "brutal" in care se rezolva. Inca nu am idee care este cea mai buna constanta (probabil una din cele doua).
Vezi si aici.
Vezi si aici.
Life is complex: it has real and imaginary components.
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Pentru cunoscatori, suma din membrul stang este suma Riemann pentru o anumita diviziune a lui \( [1,2] \) si functia \( \frac{1}{x} \). Suma este tot timpul mai mica, si poate fi facuta oricat de "aproape" de \( \int_1^2 \frac{1}{x}dx= \ln2 \). Deci \( \ln 2 \) este cea mai buna constanta pentru care inegalitatea este adevarata.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog