Suma non-standard

Moderators: Laurian Filip, Filip Chindea, Radu Titiu, maky, Cosmin Pohoata

Post Reply
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Suma non-standard

Post by Filip Chindea »

Fie \( n \) reale pozitive \( a_j \) cu suma \( 1 \). Aratati ca

\( \sum \frac{a_j}{1 + a_1 + \cdots + a_j} < \frac{1}{\sqrt{2}} \).

[ Radu Gologan - Teste tip OIM 2008 - Problema 2/Test 2 ]
Life is complex: it has real and imaginary components.
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Post by Marius Mainea »

Aplicam CBS.

\( \sum {\frac{a_j}{1+a_1+...+a_j}}=\sum {\frac{\sqrt{a_j}}{1+a_1+...+a_j}\sqrt{a_{j}}}\leq \sqrt{(\sum {\frac{a_j}{(1+a_1+...+a_j)^2}})(\sum {a_j})}< \)
\( <\sqrt{\sum {\frac{a_j}{(1+a_1+...+a_{j-1})(1+a_1+...+a_j)}}}=\sqrt{{\sum {(\frac{1}{1+a_1+...+a_{j-1}}-\frac{1}{1+a_1+...+a_j}})}}= \)
\( =\sqrt{1-\frac{1}{1+a_1+...+a_n}}=\frac{1}{\sqrt{2}} \).
Last edited by Marius Mainea on Sun Jul 13, 2008 3:18 pm, edited 1 time in total.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Corect! Remarcati si ca in cazul \( a_1 = \cdots = a_n = 1/n \) limita membrului stang este \( \log(2) \approx 0.69 < 0.71 \approx 1/\sqrt{2} \), deci este surprinzator de "sharp" pentru modul "brutal" in care se rezolva. Inca nu am idee care este cea mai buna constanta (probabil una din cele doua).
Vezi si aici.
Life is complex: it has real and imaginary components.
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

Pentru cunoscatori, suma din membrul stang este suma Riemann pentru o anumita diviziune a lui \( [1,2] \) si functia \( \frac{1}{x} \). Suma este tot timpul mai mica, si poate fi facuta oricat de "aproape" de \( \int_1^2 \frac{1}{x}dx= \ln2 \). Deci \( \ln 2 \) este cea mai buna constanta pentru care inegalitatea este adevarata.
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Inegalitati”