Fie \( A,B \in \mathcal{M}_n(\mathbb{R}) \). Demonstrati ca daca exista \( n+1 \) numere reale \( t_1,...,t_{n+1} \) astfel incat matricile \( C_{i}=A+t_i B \) pentru \( i=1,...,n+1 \) sunt nilpotente, atunci si \( A \) si \( B \) sunt nilpotente.
IMC 1995
Matrici nilpotente
Moderators: Bogdan Posa, Laurian Filip, Beniamin Bogosel, Radu Titiu, Marius Dragoi
- Beniamin Bogosel
- Co-admin
- Posts: 710
- Joined: Fri Mar 07, 2008 12:01 am
- Location: Timisoara sau Sofronea (Arad)
- Contact:
Matrici nilpotente
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
Tomorow is a mistery,
But today is a gift.
That's why it's called present.
Blog
-
Marius Mainea
- Gauss
- Posts: 1077
- Joined: Mon May 26, 2008 2:12 pm
- Location: Gaesti (Dambovita)
Deoarece \( C_i \) sunt nilpotente rezulta ca \( C_i^n=O_n,\ i=\overline{1,n+1} \).
Atunci polinomul de gradul n, \( P(x)=(A+xB)^n\in M_n(\mathbb{R})[X] \), se anuleaza pentru n+1 valori \( t_i,\ i=\overline{1,n+1} \).
Deci
\( P(x)=x^nB^n+x^{n-1}P_{n-1}+...+xP_{1}+A^n \) se anuleaza pentru \( t_1, t_2, ..., t_{n+1} \)
si de aici obtinem \( n^2 \) ecuatii polinomiale de grad n care au n+1 radacini, deci toate elementele matricelor \( B^n, P_1, P_2, ..., P_n, A^n \) sunt nule, deci A si B sunt nilpotente.
Atunci polinomul de gradul n, \( P(x)=(A+xB)^n\in M_n(\mathbb{R})[X] \), se anuleaza pentru n+1 valori \( t_i,\ i=\overline{1,n+1} \).
Deci
\( P(x)=x^nB^n+x^{n-1}P_{n-1}+...+xP_{1}+A^n \) se anuleaza pentru \( t_1, t_2, ..., t_{n+1} \)
si de aici obtinem \( n^2 \) ecuatii polinomiale de grad n care au n+1 radacini, deci toate elementele matricelor \( B^n, P_1, P_2, ..., P_n, A^n \) sunt nule, deci A si B sunt nilpotente.