Clase de echivalenta

Moderators: Mihai Berbec, Liviu Paunescu

Post Reply
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Clase de echivalenta

Post by Beniamin Bogosel »

Se considera relatia de echivalenta pe \( \mathbb{R} \):

\( x\sim y \Leftrightarrow x-y \in \mathbb{Q} \).

Demonstrati ca numarul claselor de echivalenta este \( c=card\ \mathbb{R} \).
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Aliz
Posts: 1
Joined: Sat Aug 02, 2008 3:56 pm
Location: Cluj-Napoca

Post by Aliz »

Alegem o baza a spatiului vectorial \( \mathbb{R} \) peste \( \mathbb{Q} \) (asta avand dimensiunea c), care il contine pe 1. (Exista o teorema, care ne permite acest lucru, o consecinta a axiomei alegerii.) Daca luam doua elemente ale bazei, x si y, ele sigur se afla in clase de echivalenta diferite. In caz contrar am obtine \( x-y=q\cdot 1 \), unde \( q \in \mathbb{Q} \), deci cele trei elemente ale bazei \( 1, x, y \) sunt liniar dependente, contradictie. In concluzie numarul claselor de echivalenta este \( \ge \) dimensiunea bazei \( =c \) si clar \( \le card \,\mathbb{R}=c \).
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

E adevarat ca o baza Hamel este de puterea continuumului? Exista vreo demonstratie?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Post Reply

Return to “Analiza reala”