Daca \( a,b,c>0 \) demonstrati ca: \( \sum \frac{a}{bc(c+a)} \geq \frac{27}{2(a+b+c)^2 \).
Petre Batranetu, lista scurta, 2004
New ineq.
Moderators: Bogdan Posa, Laurian Filip
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
New ineq.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
-
Omer Cerrahoglu
- Euclid
- Posts: 34
- Joined: Mon Mar 17, 2008 1:08 pm
Din CBS avem ca
\( \sum \frac{a}{bc(c+a)} \geq \frac{(\sum \frac{\sqrt{a}}{\sqrt{bc}})^2 } {2(a+b+c)}(1) \).
Vom arata ca \( \sum \frac{\sqrt{a}}{\sqrt{bc}}\geq \sum \frac{1}{\sqrt{a}}(2) \). Inmultind inegalitatea cu \( \sqrt{abc} \), ea devine \( a+b+c\geq \sqrt{ab}+\sqrt{ac}+sqrt{bc} \), care este adevarata, deci (2) este demonstrata.
Din (1) si (2) avem ca
\( \sum \frac{a}{bc(c+a)} \geq \frac{(\sum \frac{1}{\sqrt{a}})^2}{2(a+b+c)} \).
Folosind Cauchy avem
\( \sum \frac{a}{bc(c+a)} \geq \frac{81}{2(\sqrt{a}+\sqrt{b}+\sqrt{c})^2.(a+b+c)} \).
Deoarece \( (\sqrt{a}+\sqrt{b}+\sqrt{c})^2\leq 3(a+b+c) \), obtinem inegalitatea data.
\( \sum \frac{a}{bc(c+a)} \geq \frac{(\sum \frac{\sqrt{a}}{\sqrt{bc}})^2 } {2(a+b+c)}(1) \).
Vom arata ca \( \sum \frac{\sqrt{a}}{\sqrt{bc}}\geq \sum \frac{1}{\sqrt{a}}(2) \). Inmultind inegalitatea cu \( \sqrt{abc} \), ea devine \( a+b+c\geq \sqrt{ab}+\sqrt{ac}+sqrt{bc} \), care este adevarata, deci (2) este demonstrata.
Din (1) si (2) avem ca
\( \sum \frac{a}{bc(c+a)} \geq \frac{(\sum \frac{1}{\sqrt{a}})^2}{2(a+b+c)} \).
Folosind Cauchy avem
\( \sum \frac{a}{bc(c+a)} \geq \frac{81}{2(\sqrt{a}+\sqrt{b}+\sqrt{c})^2.(a+b+c)} \).
Deoarece \( (\sqrt{a}+\sqrt{b}+\sqrt{c})^2\leq 3(a+b+c) \), obtinem inegalitatea data.
-
Claudiu Mindrila
- Fermat
- Posts: 520
- Joined: Mon Oct 01, 2007 2:25 pm
- Location: Targoviste
- Contact:
Si solutia mea tot pe inegalitatea Cauchy s-a bazat.
Inmultim inegalitatea data cu \( abc \) si obtinem: \( \sum_{cyc}\frac{a^2}{c+a} \geq \frac{27abc}{2(a+b+c)^2} \).
Cum \( \sum_{cyc}\frac{a^2}{c+a}\geq\frac{a+b+c}{2}(C.B.S.) \), mai avem de demonstrat ca
\( \frac{a+b+c}{2}\geq\frac{27abc}{2(a+b+c)^2}\Longleftrightarrow (a+b+c)^3\geq 27abc \). Aceasta ultima inegalitate este adevarata intrucat ea este obtinuta prin ridicarea la cub a binecunoscutei inegalitati \( a+b+c\geq \sqrt[3]{abc} \).
Inmultim inegalitatea data cu \( abc \) si obtinem: \( \sum_{cyc}\frac{a^2}{c+a} \geq \frac{27abc}{2(a+b+c)^2} \).
Cum \( \sum_{cyc}\frac{a^2}{c+a}\geq\frac{a+b+c}{2}(C.B.S.) \), mai avem de demonstrat ca
\( \frac{a+b+c}{2}\geq\frac{27abc}{2(a+b+c)^2}\Longleftrightarrow (a+b+c)^3\geq 27abc \). Aceasta ultima inegalitate este adevarata intrucat ea este obtinuta prin ridicarea la cub a binecunoscutei inegalitati \( a+b+c\geq \sqrt[3]{abc} \).
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste