TST ineq

Moderators: Bogdan Posa, Laurian Filip

Post Reply
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

TST ineq

Post by Claudiu Mindrila »

Fie \( a,b,c \) numere reale strict pozitive cu suma \( 1 \). Sa se arate ca \( \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq 3(a^2+b^2+c^2). \)
Mircea Lascu, TST OBMJ, 2006
Last edited by Claudiu Mindrila on Thu Oct 16, 2008 9:05 pm, edited 1 time in total.
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
User avatar
Beniamin Bogosel
Co-admin
Posts: 710
Joined: Fri Mar 07, 2008 12:01 am
Location: Timisoara sau Sofronea (Arad)
Contact:

Post by Beniamin Bogosel »

\( b \)-ul din mijloc nu e la patrat?
Yesterday is history,
Tomorow is a mistery,
But today is a gift.
That's why it's called present. :)

Blog
Claudiu Mindrila
Fermat
Posts: 520
Joined: Mon Oct 01, 2007 2:25 pm
Location: Targoviste
Contact:

Post by Claudiu Mindrila »

Ba da, scuza-ma. O sa modific. Esti foarte prompt Beniamin. Nici nu au trecut 5 minute de cand am postat problema. :)
elev, clasa a X-a, C. N. "C-tin Carabella", Targoviste
Marius Mainea
Gauss
Posts: 1077
Joined: Mon May 26, 2008 2:12 pm
Location: Gaesti (Dambovita)

Re: TST ineq

Post by Marius Mainea »

Claudiu Mindrila wrote:Fie \( a,b,c \) numere reale strict pozitive cu suma \( 1 \). Sa se arate ca \( \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq 3(a^2+b^2+c^2). \)
Mircea Lascu, TST OBMJ, 2006
Vezi aici
Post Reply

Return to “Clasa a VIII-a”