Doua siruri care nu au nici un termen divizibil cu 2003

Moderators: Laurian Filip, Filip Chindea, maky, Cosmin Pohoata

Post Reply
User avatar
Vlad Matei
Pitagora
Posts: 58
Joined: Wed Sep 26, 2007 6:44 pm
Location: Bucuresti

Doua siruri care nu au nici un termen divizibil cu 2003

Post by Vlad Matei »

Fie \( \displaystyle (a_{n})_{n\geq 0},(b_{n}) _{n\geq 0} \) doua siruri de numere naturale astfel incat \( a_{0}=1,b_{0}=4 \) si \( a_{n+1}=a_{n} ^{2001}+b_{n} \), \( b_{n+1}=b_{n} ^{2001}+a_{n} \). Demonstrati ca \( (2003, a_{n})=1 \) si \( (2003, b_{n})=1 \).
(IBMO 2003)
Post Reply

Return to “Teoria Numerelor”