Sa se detemine numarul de elemente al multimii
\( A=\lbrace x\in \mathbb{Q} |\ x=\frac{z}{(z+5)(z+6)},\ z\in \mathbb{Z},\ |z|\leq 45 \rbrace \)
Cristian Calude, proba pe echipe, R.III, P.I
- Laurian Filip
- Site Admin
- Posts: 344
- Joined: Sun Nov 25, 2007 2:34 am
- Location: Bucuresti/Arad
- Contact:
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
Trebuie gasite perechile de numerele (a,b) cu proprietatea ca \( \frac{a}{(a+5)(a+6)}=\frac{b}{(b+5)(b+6)} \) cu \( a \) diferit de \( b \) \( |a|,|b|\le 45 \)
Relatia devine \( (b-a)(ab-30)=0\Longrightarrow ab=30\Longrightarrow \)perechile \( (-5,-6),(-3,-10),(-2,-15),(-1,-30),(1,30),(2,15),(3,10),(5,6)\Longrightarrow 91-8=83 \) elemente.
Relatia devine \( (b-a)(ab-30)=0\Longrightarrow ab=30\Longrightarrow \)perechile \( (-5,-6),(-3,-10),(-2,-15),(-1,-30),(1,30),(2,15),(3,10),(5,6)\Longrightarrow 91-8=83 \) elemente.