Bisectoare si mediane

Moderators: Bogdan Posa, Laurian Filip

Post Reply
alex2008
Leibniz
Posts: 464
Joined: Sun Oct 19, 2008 3:23 pm
Location: Tulcea

Bisectoare si mediane

Post by alex2008 »

In triunghiul oarecare ABC, bisectoarele (BE si (CF taie mediana AD in punctele M si N. Sa se arate ca \( \frac{AM}{MD}+\frac{AN}{ND}>2 \).
User avatar
Andi Brojbeanu
Bernoulli
Posts: 294
Joined: Sun Mar 22, 2009 6:31 pm
Location: Targoviste (Dambovita)

Post by Andi Brojbeanu »

In triunghiul \( ABD \), din teorema bisectoarei rezulta \( \frac{AM}{MD}=\frac{AB}{BD} \).

In triunghiul \( ADC \), din teorema bisectoarei rezulta \( \frac{AN}{ND}=\frac{AC}{DC} \).

Cum AD mediana \( \Rightarrow BD=DC \).

Atunci \( \frac{AM}{MD}+\frac{AN}{ND}=\frac{AB}{BD}+\frac{AC}{DC}=\frac{AB+AC}{2BD}=\frac{AB+AC}{BD} \).

Dar \( \frac{AB+AC}{BD}>2\Leftrightarrow AB+AC>2BD, AB+AC>BC \), adevarat.
Post Reply

Return to “Clasa a VII-a”