Page 1 of 1
O inegalitate interesanta intr-un triunghi.
Posted: Wed Nov 19, 2008 5:56 pm
by Virgil Nicula
Pentru un triunghi \( ABC \) notam \( \left\|\ \begin{array}{c}
A=(b+c)(c+a)(a+b)-8abc\\\\
B=abc-(b+c-a)(c+a-b)(a+b-c)\end{array}\ \right\| \) .
Se arata usor ca \( A\ge 0 \) si \( B\ge 0 \) . Sa se arate ca \( A\ge B\ge 0 \) , adica inegalitatea
\( \prod (b+c)+\prod (b+c-a)\ge 9abc \) (Virgil Nicula & Cosmin Pohoata, Mathematical Reflections).
Posted: Tue Dec 02, 2008 8:46 pm
by Marius Mainea
Notand a=x+y b=x+z , c=x+y inegaitatea este echivalenta cu
\( (2x+y+z)(2y+z+x)(2z+x+y)+8xyz\ge 9(x+y)(y+z)(z+x) \)
sau cu s=x+y+z
\( (s+x)(s+y)(s+z)+8xyz\ge 9(s-x)(s-y)(s-z) \)
sau \( s^3+9xyz\ge 4s(xy+yz+zx) \) care este inegalitatea lui Schur sub alta forma.
Posted: Mon Feb 23, 2009 7:49 pm
by Virgil Nicula
Se poate arata ceva mai frumos :
\( \underline{\overline{\left\|\ 9abc\ \le\ \prod (b+c)+\prod (b+c-a)\ \le\ (a+b+c)(ab+bc+ca)\ \right\|}}\ . \)
Posted: Tue Feb 24, 2009 9:01 am
by maxim bogdan
Virgil Nicula wrote:Se poate arata ceva mai frumos :
\( \underline{\overline{\left\| \prod (b+c)+\prod (b+c-a)\ \le\ (a+b+c)(ab+bc+ca)\ \right\|}}\ . \)
Lasam notatiile cele stabilite de domnul profesor
Marius Mainea.
Inegalitatea va fi echivalenta cu:
\( \prod (s+x)+8xyz\leq 2s(s^2 +\sum xy)\Longleftrightarrow \)
\( \Longleftrightarrow s^3 +s(\sum xy)+s^3 +9xyz\leq 2s^3 +2s(\sum xy)\Longleftrightarrow \)
\( \Longleftrightarrow 9xyz\leq (x+y+z)(xy + yx+ xz)\Longleftrightarrow \)
\( \Longleftrightarrow z(x-y)^2 +x(y-z)^2 +y(z-x)^2 \geq 0. \)