Inegalitatea 3, geometrica, cu a, b, c, r_a, r_b, r_c

Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea

Post Reply
User avatar
Cezar Lupu
Site Admin
Posts: 612
Joined: Wed Sep 26, 2007 2:04 pm
Location: Bucuresti sau Constanta
Contact:

Inegalitatea 3, geometrica, cu a, b, c, r_a, r_b, r_c

Post by Cezar Lupu »

Sa se demonstreze ca in orice triunghi \( ABC \) este adevarata inegalitatea

\( \frac{a}{r_{a}}+\frac{b}{r_{b}}+\frac{c}{r_{c}}\geq 2\sqrt{3} \).

(notatiile sunt standard)
An infinite number of mathematicians walk into a bar. The first one orders a beer. The second orders half a beer. The third, a quarter of a beer. The bartender says “You’re all idiots”, and pours two beers.
User avatar
Filip Chindea
Newton
Posts: 324
Joined: Thu Sep 27, 2007 9:01 pm
Location: Bucharest

Post by Filip Chindea »

Cunoastem formula razei cercului \( A \) - exînscris, \( r_a = \frac{S}{p-a} \). Deci in stanga avem:
\( \sum \frac{a}{r_a} = \sum \frac{a(p-a)}{S} = \sum \frac{a(b + c - a)}{2S} \),
si avem de aratat
\( 2(ab + bc + ca) \ge 4S\sqrt{3} + a^2 + b^2 + c^2 \Leftrightarrow \)
\( a^2 + b^2 + c^2 \ge 4S\sqrt{3} + (a-b)^2 + (b-c)^2 + (c-a)^2 \),
care, ce surpriza, este inegalitatea Hadwiger-Finsler.
Ca tot am inceput, demonstratia pe care o prefer este substitutia \( x = p - a \), etc., in
\( (xy + yz + zx)^2 \ge 3xyz(x+y+z) \),
in urma careia obtinem
\( \left( \sum (p-a)(p-b) \right)^2 \ge 3p(p-a)(p-b)(p-c) \Leftrightarrow \)
\( \sum (p-a)(p-b) \ge S\sqrt{3} \Leftrightarrow \)
\( \sum (c^2 - (b - a)^2) \ge 4S\sqrt{3} \Leftrightarrow \)
\( \sum a^2 \ge \sum (a-b)^2 + 4S\sqrt{3} \),
ceea ce trebuia aratat.
Life is complex: it has real and imaginary components.
Post Reply

Return to “Clasa a IX-a”