Stiind ca \( abc=1 \), \( a,b,c\in\mathbb{R}_+^* \), aratati ca
\( \sum_{cyc}{\frac{1}{a^2+2b^2+3}\le\frac{1}{2} \).
Tot din Shortlist ONM 2008
Moderators: Laurian Filip, Beniamin Bogosel, Filip Chindea
- DrAGos Calinescu
- Thales
- Posts: 121
- Joined: Sun Dec 07, 2008 10:00 pm
- Location: Pitesti
- maxim bogdan
- Thales
- Posts: 106
- Joined: Tue Aug 19, 2008 1:56 pm
- Location: Botosani
Solutie!
Avem: \( \sum_{cyc}\frac{1}{a^2+2b^2+3}=\sum_{cyc}\frac{1}{(a^2+b^2)+(b^2+1)+2}\leq \sum_{cyc}\frac{1}{2ab+2b+2} \) (Inegalitatea mediilor).
Cum \( abc=1\Rightarrow(\exist) \) \( x,y,z\in\mathb{R}_{+}^* \) astfel incat \( a=\frac{x}{y}; b=\frac{y}{z}; c=\frac{z}{x}. \)
De aici va rezulta ca: \( \frac{1}{2}(\sum_{cyc}\frac{1}{ab+b+1})=\frac{1}{2}(\sum_{cyc}\frac{z}{x+y+z})=\frac{1}{2}. \)
Deci inegalitatea noastra este demonstrata!
Cum \( abc=1\Rightarrow(\exist) \) \( x,y,z\in\mathb{R}_{+}^* \) astfel incat \( a=\frac{x}{y}; b=\frac{y}{z}; c=\frac{z}{x}. \)
De aici va rezulta ca: \( \frac{1}{2}(\sum_{cyc}\frac{1}{ab+b+1})=\frac{1}{2}(\sum_{cyc}\frac{z}{x+y+z})=\frac{1}{2}. \)
Deci inegalitatea noastra este demonstrata!
Feuerbach